MICROCONTROLLER

UNIT-IV Lecture-4

LCD INTERFACING

- LCD is finding widespread use replacing LEDs
- The declining prices of LCD
- The ability to display numbers, characters, and graphics
- Incorporation of a refreshing controller into the LCD, thereby relieving the CPU of the task of refreshing the LCD
- Ease of programming for characters and graphics

LCD Pin Descriptions

Pin Descriptions for LCD

Pin

14

DB7

Symbol

I/O

I/O

		•		
1	VSS		Ground	
2	VCC		+5V power supply	
3	VEE		Power supply to control contrast	
4	RS	I	RS=0 to select command register, RS=1 to select data register	
5	R/W	I	R/W=0 for write,	
			R/W=1 for read	used by the
6	Е	I/O	Enable	LCD to late
7	DB0	I/O	The 8-bit data bus	information
8	DB1	I/O	The 8-bit data bus	presented to
9	DB2	I/O	The 8-bit data bus	its data bus
10	DB3	I/O	The 8-bit data bus	
11	DB4	I/O	The 8-bit data bus	
12	DB5	I/O	The 8-bit data bus	
13	DB6	I/O	The 8-bit data bus	

The 8-bit data bus

Descriptions

- Send displayed information or instruction command codes to the LCD
- Read the contents of the LCD's internal registers

LCD Command Codes

LCD Command Codes

Code (Hex)	Command to LCD Instruction Register
1	Clear display screen
2	Return home
4	Decrement cursor (shift cursor to left)
6	Increment cursor (shift cursor to right)
5	Shift display right
7	Shift display left
8	Display off, cursor off
Α	Display off, cursor on
С	Display on, cursor off
Е	Display on, cursor blinking
F	Display on, cursor blinking
10	Shift cursor position to left
14	Shift cursor position to right
18	Shift the entire display to the left
1C	Shift the entire display to the right
80	Force cursor to beginning to 1st line
CO	Force cursor to beginning to 2nd line
38	2 lines and 5x7 matrix

LCD INTERFACING

- ▶ To send any of the commands to the LCD, make pin RS=0. For data, make RS=1. Then send a high-to-low pulse to the E pin to enable the internal latch of the LCD. This is shown in the code below.
- ;calls a time delay before sending next data/command
- ;P1.0-P1.7 are connected to LCD data pins D0-D7
- ;P2.0 is connected to RS pin of LCD

;P2.1 is connected to R/W pin of LCD ;P2.2 is connected to E pin of LCD ORG 0H MOV A,#38H; INIT. LCD 2 LINES, 5X7 MATRIX ACALL COMNWRT ; call command subroutine ACALL DELAY ; give LCD some time MOV A,#0EH; display on, cursor on ACALL COMNWRT ; call command subroutine ACALL DELAY ; give LCD some time

MOV A,#01 ;clear LCD ACALL COMNWRT ; call command subroutine ACALL DELAY ; give LCD some time MOV A,#06H; shift cursor right ACALL COMNWRT ; call command subroutine ACALL DELAY ; give LCD some time MOV A,#84H ; cursor at line 1, pos. 4 ACALL COMNWRT ; call command subroutine ACALL DELAY ; give LCD some time MOV A,#'N'; display letter N ACALL DATAWRT ; call display subroutine

ACALL DELAY ; give LCD some time MOV A,#'O'; display letter O ACALL DATAWRT; call display subroutine AGAIN: SJMP AGAIN ; stay here COMNWRT: ;send command to LCD MOV P1,A; copy reg A to port 1 CLR P2.0; RS=0 for command CLR P2.1 ;R/W=0 for write SETB P2.2 ;E=1 for high pulse

```
ACALL DELAY ; give LCD some time
CLR P2.2 ;E=0 for H-to-L pulse
RET
DATAWRT: ;write data to LCD
MOV P1,A; copy reg A to port 1
SETB P2.0; RS=1 for data
CLR P2.1; R/W=0 for write
SETB P2.2 ;E=1 for high pulse
```

```
ACALL DELAY ; give LCD some time
CLR P2.2 ;E=0 for H-to-L pulse
RET
DELAY:MOV R3,#50 ;50 or higher for fast
 CPUs
HERE2: MOV R4,\#255; R4 = 255
HERE: DJNZ R4, HERE ; stay until R4 becomes 0
DJNZ R3,HERE2
RET
```